Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1326188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370358

RESUMO

Objective: Gray-scale ultrasound (US) is the standard-of-care for evaluating thyroid nodules (TNs). However, the performance is better for the identification of hypoechoic malignant TNs (such as classic papillary thyroid cancer) than isoechoic malignant TNs. Quantitative ultrasound (QUS) utilizes information from raw ultrasonic radiofrequency (RF) echo signal to assess properties of tissue microarchitecture. The purpose of this study is to determine if QUS can improve the cancer risk stratification of isoechoic TNs. Methods: Patients scheduled for TN fine needle biopsy (FNB) were recruited from the Thyroid Health Clinic at Boston Medical Center. B-mode US and RF data (to generate QUS parameters) were collected in 274 TNs (163 isoechoic, 111 hypoechoic). A linear combination of QUS parameters (CQP) was trained and tested for isoechoic [CQP(i)] and hypoechoic [CQP(h)] TNs separately and compared with the performance of conventional B-mode US risk stratification systems. Results: CQP(i) produced an ROC AUC value of 0.937+/- 0.043 compared to a value of 0.717 +/- 0.145 (p >0.05) for the American College of Radiology Thyroid Imaging, Reporting and Data System (ACR TI-RADS) and 0.589 +/- 0.173 (p >0.05) for the American Thyroid Association (ATA) risk stratification system. In this study, CQP(i) avoids unnecessary FNBs in 73% of TNs compared to 55.8% and 11.8% when using ACR TI-RADS and ATA classification system. Conclusion: This data supports that a unique QUS-based classifier may be superior to conventional US stratification systems to evaluate isoechoic TNs for cancer and should be explored further in larger studies.


Assuntos
Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Humanos , Estados Unidos , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/patologia , Estudos Retrospectivos , Biópsia por Agulha Fina , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/patologia , Medição de Risco
2.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352586

RESUMO

Pelvic organ prolapse (POP) is a gynecological disorder described by the descent of superior pelvic organs into or out of the vagina as a consequence of disrupted muscles and tissue. A thorough understanding of the etiology of POP is limited by the availability of clinically relevant samples, restricting longitudinal POP studies on soft-tissue biomechanics and structure to POP-induced models such as fibulin-5 knockout (FBLN5-/-) mice. Despite being a principal constituent in the extracellular matrix, little is known about structural perturbations to collagen networks in the FBLN5-/- mouse cervix. We identify significantly different collagen network populations in normal and prolapsed cervical cross-sections using two label-free, nonlinear microscopy techniques. Collagen in the prolapsed mouse cervix tends to be more isotropic, and displays reduced alignment persistence via 2-D Fourier Transform analysis of images acquired using second harmonic generation microscopy. Furthermore, coherent Raman hyperspectral imaging revealed elevated disorder in the secondary structure of collagen in prolapsed tissues. Our results underscore the need for in situ multimodal monitoring of collagen organization to improve POP predictive capabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...